Table 3.	Deviations ($\times 10^3$ Å) of atoms from	m the
	plane of the benzene ring	

C(1)*	1	C(6)*	2
C(2)*	-2	C(7)	18
C(3)*	1	C(8)	121
C(4)*	2	0	-27
C(5)*	- 3		

* The atoms used for the calculation of the least-squares plane.

All the calculations were performed on the FACOM 270-30 of this Institute with a local version of the Universal Crystallographic Computation Program System UNICS (Crystallographic Society of Japan, 1967). Part of the cost of this research was met by a Scientific Research Grant from the Ministry of Education to which the authors' thanks are due.

References

BIRNBAUM, G. I. (1973). Acta Cryst. B29, 54-60.

- DIDEBERG, O., CAMPSTEYN, H. & DUPONT, L. (1973). Acta Cryst. B29, 103-112.
- HARTMAN, A. & HIRSHFELD, F. L. (1966). Acta Cryst. 20, 80-82.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

 Table 4. Intermolecular contacts with their standard deviations in parentheses

- (a) Between non-hydrogen atoms
 - $C(5^i) \cdots O^{ii}$ 3.379 (2) Å

(b) Between hydrogen and other atoms

$H(4^i) \cdots O^{ii}$	2.69 (2)
$H(5^i) \cdots C(2^{i_i})$	3.02 (2)
$H(5^i) \cdots C(7^{i_i})$	3.02 (2)
$H(2^i) \cdots H(3^{iii})$	2.54 (3)
$H(2^i) \cdots C(5^{iii})$	3.08 (3)
$H(2^i) \cdots H(4^{iii})$	2.53 (3)
$O^i \cdot \cdot \cdot \cdot H(8^{iv})$	2.48 (2)
$H(1^i) \cdots C(5^{iv})$	2.97 (1)

Superscripts indicate the following equivalent positions:

i	х	y	Z
ii	0.5-x	0.5 + y	0.5 - z
iii	0.5-x	-0.5+y	$1 \cdot 5 - z$
iv	0.5+x	$1 \cdot 5 - y$	0.5 + z

- Post, B., Schwartz, R. S. & Fankuchen, I. (1951). Rev. Sci. Instrum. 22, 218–219.
- TANIMOTO, Y., KOBAYASHI, H., NAGAKURA, S. & AZUMI, T. (1972). Chem. Phys. Lett. 16, 10–13.
- TSUCHIYA, H., MARUMO, F. & SAITO, Y. (1972). Acta Cryst. B28, 1935–1941.

Acta Cryst. (1973). B29, 1826

The Crystal Structure of Dimethyl Ammonium Phosphate, NH₄(CH₃)₂PO₄

BY L. GIARDA, F. GARBASSI AND M. CALCATERRA

Montedison Co., 'G. Donegani' Research Institute, 28100 Novara, Italy

(Received 12 March 1973; accepted 14 March 1973)

NH₄(CH₃)₂PO₄ is monoclinic, space group $P2_1/c$, with $a=10\cdot20$ (1), $b=6\cdot88$ (1), $c=9\cdot74$ (1) Å, $\beta=105\cdot5$ (3)° and Z=4. The structure was determined from intensities measured on a two-circle diffractometer by Patterson and Fourier syntheses, and refined by the least-squares method (667 observed reflexions). The final *R* value, without contributions from the hydrogen atoms, is 0.076. Due to the existence of hydrophobic and hydrophilic parts in the molecule, a layer structure is present, extending parallel to the *bc* plane.

Introduction

The need for accurate structural investigations of alkyl-phosphates was emphasized by Cruickshank (1961). Recently, Hazel & Collin (1972) detailed the importance of phosphate diesters and their implications regarding the structure of nucleic acids. A structural analysis of dimethyl ammonium phosphate, $NH_4(CH_3)_2PO_4$, can contribute by providing information about the angles of internal rotation about the C-O bond. In addition, the recent publication of structures of diammonium hydrogen phosphate $(NH_4)_2HPO_4$ (Khan, Roux & James, 1972), and of methyl diammonium phosphate dihydrate

 $(NH_4)_2CH_3PO_4.2H_2O$ (Garbassi, Giarda & Fagherazzi, 1972), reveals a continued interest in ammonium phosphates.

Experimental

In the reaction between P_2O_5 , ammonia and methanol in chloroform, a mixture of various ammonium methyl phosphates is obtained (Gilli & Zani, 1973). The two major components of the reaction product are diammonium methyl phosphate, whose structure in the dihydrate form has already been determined (Garbassi, Giarda & Fagherazzi, 1972), and dimethyl ammonium phosphate. The latter can be easily separated in ethanol and recrystallized. Colourless, elongated plates are obtained. X-ray data were taken on a crystal with transversal dimensions about 0.2×0.15 mm, around the *c* axis. Weissenberg photographs showed the space group extinctions k = 2n+1 for 0k0 and l = 2n+1 for h0l; the space group is therefore $P2_1/c$.

Crystal data are: a = 10.20 (1), b = 6.88 (1), c = 9.74 (1) Å, $\beta = 105.5$ (3)°, V = 658.7 Å³, Z = 4, $D_{obs} = 1.433$, $D_{calc} = 1.440$ g cm⁻³, M.W. 143.08.

The intensity data were collected on a Stoe automatic diffractometer by the equi-inclination technique, using Cu K α radiation. The θ -2 θ scanning mode was used, and the scan speed (between 0.5 and 4°/min) and the attenuation filters were automatically selected according to the reflexion intensities. Stationary crystal and counter background counts for 1 min were taken at each end of the scan, whose width, $\Delta\theta$, was 2.5°. The measurements were made up to 2θ =130°. Six independent reflexions, with their symmetry equivalents, were assumed as standards and monitored between each layer collection. Good stability was found. 743 reflexions were measured, and 667 of them, having an intensity higher than 2.5 times the calculated standard deviation, were considered observed.

Background, attenuation and Lorentz-polarization corrections were made by means of the program furnished by Stoe. No correction was considered necessary for absorption, since μR was about 0.6.

Determination and refinement of the structure

A three-dimensional Patterson synthesis revealed the P-P vector. The remaining non-hydrogen atoms were located by electron density syntheses. At this stage, a structure factor calculation, with atomic scattering factors calculated following Moore (1963), gave R = 0.33. The full-matrix least-squares refinement was

Table 1. Observed and calculated structure factors

Unobserved F's are marked by an <. Zero weight F's in the least-squares refinement are indicated by an E.

3、 ううてもちたうますけうほうで もちとう きゅいにつ ううてもち とうす ゆいにしうて もちたう オタバ りうてもち たう オタバーシス もちに マランス もちのじ ロリンス もちあう オタバドロ し
ビーバル バルバル バル バル バー・トー・トー・トーン ファファファファファファマス ちょうちょうちょう ちゅうちゅうちょくちょくちょうちょうちょうちょう アファスストー・トー・トーン シー・アン
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
アーション スパックス ション・ション クロード・コーン・コード・コード・コード・コード・コード・コード・コード・コード・コード・コード
7
2、"此份对情况对为你们很有为我的小孩子做为,你还要要有了。"功力,我也说:"你我不能不能是我就不能可能要你的你没有你让我为对你?你有这你们自己动作的物力你就可能能的这些?""你是你你还没有你这些对我
C てきぎりをなかうしてもののかんかんのものであたかしもでのあっとううなりのうかうべきなながくなううなものからしないたかのであいは消かったが、「かっかった」では、「ないないない」では、「、「、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
レールにおかっていたいたいたいたいでは、「「「」」」」」、「」」、コンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ
$ \begin{array}{c} r, \\ \chi_{1} r_{2} r_{2} r_{1} r_{1}$
イートクラクククククククククマンでは、「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
2、 からししとしんしんしんしんしんしんシステナフラのののののの「りっし」」」」」」」」」」」」」」フラフラフラフラフラフラスででできませんかかかかかかかかかかかかったしんしんしんシステナラののつつの「 ていじててててててていていててていていていていていたいかかかかかかかかかかかかか
,一次1177元11466,四方汉行为成长在在在外外的分为加速中带的方面的有关的消息的消息或用用的注意用的方法。每日有关或的方式的行为行为117万亿,用用用用有有有有的方面的方面的方面的方面。有一个方面
17. 7月前月前前外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外
3、"这些吗?""这个这个是这些你是这些说,我们就是这些吗?""这个是一个是一个是一个是一个是一个是一个是一个是一个是一个是一个是一个是一个是一个
2 て 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2、 不见不见,不能是我的我的,我们也不是我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,
ר ווא - הראו זיז זיז אות
,一次,一次,一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一

Table 2. Fractional atomic parameters (×10⁴) and anisotropic thermal parameters B_{ij} (×10²) with their standard deviations

Temperature factor $= \exp$	$\left[-\frac{1}{4}(B_{11}a^{*2}h^2+B_{22}b^{*2}k^2)\right]$	$+B_{33}c^{*2}l^{2}+2B_{12}a^{*}b^{*}hk+2B$	$a^{*}c^{*}hl + 2B_{23}b^{*}c^{*}kl$
			10 10 10 10 10 10 10 10 10 10 10 10 10 1

	x	У	Ζ	B_{11}	B22	B ₃₃	B_{12}	B_{13}	B ₂₃
Р	2219 (1)	1320 (2)	1407 (2)	234 (6)	163 (6)	177 (21)	-17 (4)	39 (7)	-10(6)
O(1)	2131 (4)	511 (6)	-92(7)	352 (20)	266 (19)	369 (48)	72 (16)	3 (21)	-84(23)
O(2)	3687 (4)	2251 (6)	1931 (6)	261 (17)	313 (19)	178 (45)	-67 (14)	30 (19)	54 (18)
O(3)	1135 (4)	2835 (7)	1158 (7)	290 (19)	309 (20)	424 (20)	69 (15)	55 (20)	- 56 (21)
O(4)	2183 (5)	-251(7)	2464 (7)	557 (25)	325 (20)	180 (45)	-159 (19)	91 (22)	52 (21)
C(1)	3107 (10)	-932(15)	-369 (16)	562 (48)	534 (47)	1282 (118)) 285 (40)	68 (53)	-350(58)
C(2)	4012 (9)	3840 (12)	1141 (13)	444 (38)	595 (36)	835 (93)	- 182 (30)	132 (41)	136 (40)
N	358 (5)	6673 (7)	1678 (8)	324 (22)	229 (19)	234 (53)	-3 (17)	93 (23)	- 33 (22)

Hydrogen atoms located by means of a difference Fourier map

H(1)	-125	6910	256
H(2)	750	5750	1440

carried out with a program by Immirzi (1967), applying the weighting scheme suggested by Cruickshank (1965). Convergence was obtained with R=0.12.

The introduction of anisotropic thermal factors lowered R to 0.085, and the elimination of four lowangle reflexions probably suffering from extinction, gave a final R of 0.076 (0.080 including non-observed reflexions). An attempt to locate the hydrogen atoms from a difference map met with only partial success: two hydrogen atoms around nitrogen were located with certainty.

Table 1 lists observed and calculated structure factors. Final positional and thermal parameters with their standard deviations are given in Table 2.

Discussion

The dimethyl phosphate group

Bond distances and angles of the $(CH_3)_2O_2PO_2^-$ ion are listed in Table 3.

Table 3. Interatomic distances and bond angles

P-O(1)	1·536 (7) Å	O(1) - P - O(2)	104·8 (1)°
P-O(2)	1.582 (5)	O(1) - P - O(3)	104.5(2)
P-O(3)	1.490 (5)	O(1) - P - O(4)	112.5(2)
P-O(4)	1.498 (7)	O(2) - P - O(3)	111.4(2)
Average	1.521	O(2) - P - O(4)	105.7(2)
-		O(3) - P - O(4)	117.2(2)
O(1) - C(1)	1.481 (11)	Average	109.3
O(2) - C(2)	1.425 (12)	e	
Average	1.453	P-O(1)-C(1)	123.0 (4)
		P-O(2)-C(2)	118.3 (4)
NH(1)	1.02	Average	120.6
NH(2)	0.83	e	
O(1) - O(2)	2.478 (8)		
O(1)-O(3)	2.398 (6)		
O(1)-O(4)	2.532 (9)		
O(2)–O(3)	2.540 (7)		
O(2)-O(4)	2.455 (7)		
O(3)-O(4)	2.555 (8)		

In the PO₄ group there are two longer P–O bonds, where oxygen atoms are bonded to methyl groups, with an average value of 1.559 Å, and two shorter (average value: 1.494 Å). The PO₄ tetrahedron is slightly distorted with O–P–O angles between 104.5 and 112.5°. Only the angle between the two shorter P-O bonds (117.2°) is considerably greater than that of a regular tetrahedron, in agreement with the value generally accepted for unprotonated O-P-O angles (Karle & Britts, 1966).

There are few examples of structural refinements of phosphate diesters. A comparison of the P-OC bond lengths in these compounds is given in Table 4.

The lengths of PO–C bonds are generally near 1.43 Å (Sundaralingam & Putkey, 1970), but longer bonds are found, such as 1.502 Å in dipotassium ethyl phosphate tetrahydrate (McDonald & Cruickshank, 1971). Therefore, the bond lengths found by us, 1.425 and 1.481 Å, can be considered normal.

Fig. 1. Newman projections of the phosphate group along the P-OC bonds.

Fig. 2. Projection of the crystal structure along the b axis. The hydrogen bonds are indicated by arrows.

Dimethyl ammonium phosphate	1·582 (5) Å	1·536 (7) Å	This work
Dibenzylphosphoric acid	1.566	1.545	Dunitz & Rollett (1956)
Barium diethyl phosphate	1.62 (2)	1.59 (2)	Kyogoku & litaka (1966)
Silver diethyl phosphate	1.549 (8)	1.548 (9)	Hazel & Collin (1972)

Fig. 1 shows the Newman projections of the phosphate group along the P–OC bonds. The methyl group assumes in both cases a staggered conformation with respect to other oxygen atoms. A comparison between the angles of internal rotation around the P–OC bonds in phosphate diesters and in some polynucleotides was carried out by Kyogoku & Iitaka (1966). The values obtained in the present work, of $\pm 57.5^{\circ}$ (in mutually enantiomorphous molecules) for O(2)–P–O(1)–C(1) and $\pm 62.4^{\circ}$ for O(1)–P–O(2)–C(2) are in agreement with those obtained by the above authors in barium diethyl phosphate.

Examining the chains C-C-O-P-O-C-C in the latter compound, in dibenzylphosphoric acid (Dunitz & Rollett, 1956) and in silver diethyl phosphate (Hazel & Collin, 1972), the conformations of internal rotation angles are respectively: *trans, gauche, gauche, trans; trans, gauche, trans, trans, gauche, trans, trans, gauche, skew, trans.* These results can be compared with a conformation *gauche, gauche* for the chain C-O-P-O-C in dimethyl ammonium phosphate.

Hydrogen bonding and packing of the molecules

Table 5 lists distances and angles of the coordination polyhedron around the NH₄⁺ ion. Of the five nearest oxygen atoms, four, with distances varying from 2.79 to 3.03 Å (average value 2.86 Å) and placed at the corners of a distorted tetrahedron, can be accepted as hydrogen bonds. The N-H···O distances and the coordination number of nitrogen are in good agreement with those of several ammonium phosphates listed by Khan & Baur (1972). Only oxygen atoms not attached to methyl groups participate in the hydrogen bond system. Each O(3) acts three times as an acceptor, while O(4) is linked to the ammonium ion by only one

Fig. 3. The network of hydrogen bonds along the *a* axis. Atoms not involved are omitted.

hydrogen bond. In Fig. 3, the network of hydrogen bonds is shown in a projection on to the *bc* plane. For clarity, the atoms not involved are omitted. The grid is made up horizontally of $\cdots O(3) \cdots N \cdots O(3) \cdots$ sequences and vertically of $\cdots N \cdots O(3) - P - O(4) \cdots$ $N \cdots$ sequences. As shown in Fig. 2, the structure consist of double layers extending parallel to the *bc* plane. The layers are separated from each other by van der Waals contacts between the hydrophobic methyl groups. A similar situation can be found in aminoacid structures, such as L-valine (Torii & Iitaka, 1970) and L-isoleucine (Khawas, 1970).

Table 5. Interatomic distances less than 3.3 Å and related angles

	$i x, \\ ii x, 1 \\ iii -x, \\ iv -x, \frac{1}{2}$	y, z $+y, z$ $-y, -z$ $+y, \frac{1}{2}-z$	
N-O(3 ⁱ)	2·842* Å	O(3 ⁱ)N-O(3 ⁱⁱⁱ)	92∙3°
$N-O(3^{iii})$	2 ·790*	$O(3^{1}) - N - O(3^{1})$	126.0
N-O(3 ¹)	3.027*	$O(3^{i}) - N - O(4^{i})$	123.8
$N - O(4^{11})$	2.786*	$O(3^{11}) - N - O(3^{12})$	114.5
$N - O(4^{1v})$	3.221	$O(3^{111}) - N - O(4^{11})$	109·0
. ,		$O(3^{iv}) - N - O(4^{ii})$	91.2

* Hydrogen bonds.

References

CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.

- CRUICKSHANK, D. W. J. (1965). Computing Methods in Crystallography. Edited by J. S. ROLLETT, chap. 14. Oxford: Pergamon Press.
- DUNITZ, J. D. & ROLLETT, J. S. (1956). Acta Cryst. 9, 327-334.
- GARBASSI, F., GIARDA, L. & FAGHERAZZI, G. (1972). Acta Cryst. B28, 1665–1670.
- GILLI, G. & ZANI, F. (1973). Chim. Ind. 55, 346-347.
- IMMIRZI, A. (1967). Ric. Sci. 37, 743-749.
- HAZEL, J. P. & COLLIN, R. L. (1972). Acta Cryst. B28, 2951–2957.
- KARLE, I. L. & BRITTS, K. (1966). Acta Cryst. 20, 118-124.
- KHAN, A. A. & BAUR, W. H. (1972). Acta Cryst. B28, 683– 693.
- KHAN, A. A., ROUX, J. P. & JAMES, W. J. (1972). Acta Cryst. B28, 2065–2069.
- KHAWAS, B. (1970). Acta Cryst. B26, 1385-1387.
- Куодоки, Ү. & Іітака, Ү. (1966). Acta Cryst. 21, 49-57.
- McDonald, W. S. & CRUICKSHANK, D. W. J. (1971). Acta Cryst. B27, 1315-1319.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169-1175.
- SUNDARALINGAM, M. & PUTKEY, E. F. (1970). Acta Cryst. B26, 790-800.
- TORII, K. & IITAKA, Y. (1970). Acta Cryst. B26, 1317-1326.